Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316771

RESUMO

Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we demonstrate in ad libitum-fed mice that liquid carbohydrate loading for one week drives reductions in solid food intake, while nearly doubling total caloric intake. Similarly, in humans, simple carbohydrate intake is inversely correlated with dietary protein intake. Carbohydrate loading-induced protein dilution increases expression of hepatic fibroblast growth factor 21 (FGF21) independent of caloric intake, resulting in protection in two models of surgical stress: renal and hepatic ischemia-reperfusion injury. The protection is consistent across male, female, and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocks carbohydrate loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21 is associated with the induction of the canonical integrated stress response (ATF3/4, NF-kB), and oxidative metabolism (PPARγ). Together, these data support carbohydrate loading drinks prior to surgery and reveal an essential role of protein dilution via FGF21.


Assuntos
Dieta da Carga de Carboidratos , Fatores de Crescimento de Fibroblastos , Traumatismo por Reperfusão , Procedimentos Cirúrgicos Operatórios , Animais , Feminino , Humanos , Masculino , Camundongos , Carboidratos da Dieta/metabolismo , Proteínas na Dieta/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/cirurgia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo
2.
Antioxidants (Basel) ; 12(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760034

RESUMO

The saphenous vein is the conduit of choice for bypass grafting. Unfortunately, the hemodynamic stress associated with the arterial environment of the bypass vein graft leads to the development of intimal hyperplasia (IH), an excessive cellular growth and collagen deposition that results in restenosis and secondary graft occlusion. Hydrogen sulfide (H2S) is a ubiquitous redox-modifying gasotransmitter that inhibits IH. H2S is produced via the reverse trans-sulfuration pathway by three enzymes: cystathionine γ-lyase (CSE), cystathionine ß-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). However, the expression and regulation of these enzymes in the human vasculature remains unclear. Here, we investigated the expression of CSE, CBS and 3-MST in segments of native human saphenous vein and large arteries. Furthermore, we evaluated the regulation of these enzymes in vein segments cultured under static, venous (7 mmHg pressure) or arterial (100 mmHg pressure) pressure. CSE was expressed in the media, neointima and intima of the vessels and was negatively regulated by arterial shear stress. Adenoviral-mediated CSE overexpression or RNA interference-mediated CSE knock-down revealed that CSE inhibited primary human VSMC migration but not proliferation. We propose that high shear stress in arteriovenous bypass grafts inhibits CSE expression in both the media and endothelium, which may contribute to increased VSMC migration in the context of IH.

3.
JVS Vasc Sci ; 4: 100095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36852171

RESUMO

Objective: Hydrogen sulfide is a proangiogenic gas produced primarily by the transsulfuration enzyme cystathionine-γ-lyase (CGL). CGL-dependent hydrogen sulfide production is required for neovascularization in models of peripheral arterial disease. However, the benefits of increasing endogenous CGL and its mechanism of action have not yet been elucidated. Methods: Male whole body CGL-overexpressing transgenic (CGLTg) mice and wild-type (WT) littermates (C57BL/6J) were subjected to the hindlimb ischemia model (age, 10-12 weeks). Functional recovery was assessed via the treadmill exercise endurance test. Leg perfusion was measured by laser Doppler imaging and vascular endothelial-cadherin immunostaining. To examine the angiogenic potential, aortic ring sprouting assay and postnatal mouse retinal vasculature development studies were performed. Finally, comparative metabolomics analysis, oxidized/reduced nicotinamide adenine dinucleotide (NAD+/NADH) analysis, and quantitative real-time polymerase chain reaction were performed on CGLWT and CGLTg gastrocnemius muscle. Results: The restoration of blood flow occurred more rapidly in CGLTg mice. Compared with the CGLWT mice, the median ± standard deviation running distance and time were increased for the CGLTg mice after femoral artery ligation (159 ± 53 m vs 291 ± 74 m [P < .005] and 17 ± 4 minutes vs 27 ± 5 minutes [P < .05], respectively). Consistently, in the CGLTg ischemic gastrocnemius muscle, the capillary density was increased fourfold (0.05 ± 0.02 vs 0.20 ± 0.12; P < .005). Ex vivo, the endothelial cell (EC) sprouting length was increased in aorta isolated from CGLTg mice, especially when cultured in VEGFA (vascular endothelial growth factor A)-only media (63 ± 2 pixels vs 146 ± 52 pixels; P < .05). Metabolomics analysis demonstrated a higher level of niacinamide, a precursor of NAD+/NADH in the muscle of CGLTg mice (61.4 × 106 ± 5.9 × 106 vs 72.4 ± 7.7 × 106 area under the curve; P < .05). Similarly, the NAD+ salvage pathway gene expression was increased in CGLTg gastrocnemius muscle. Finally, CGL overexpression or supplementation with the NAD+ precursor nicotinamide mononucleotide improved EC migration in vitro (wound closure: control, 35% ± 9%; CGL, 55% ± 11%; nicotinamide mononucleotide, 42% ± 13%; P < .05). Conclusions: Our results have demonstrated that CGL overexpression improves the neovascularization of skeletal muscle on hindlimb ischemia. These effects correlated with changes in the NAD pathway, which improved EC migration.

4.
Front Cardiovasc Med ; 9: 965965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262202

RESUMO

Therapies to accelerate vascular repair are currently lacking. Pre-clinical studies suggest that hydrogen sulfide (H2S), an endogenous gasotransmitter, promotes angiogenesis. Here, we hypothesized that sodium thiosulfate (STS), a clinically relevant source of H2S, would stimulate angiogenesis and vascular repair. STS stimulated neovascularization in WT and LDLR receptor knockout mice following hindlimb ischemia as evidenced by increased leg perfusion assessed by laser Doppler imaging, and capillary density in the gastrocnemius muscle. STS also promoted VEGF-dependent angiogenesis in matrigel plugs in vivo and in the chorioallantoic membrane of chick embryos. In vitro, STS and NaHS stimulated human umbilical vein endothelial cell (HUVEC) migration and proliferation. Seahorse experiments further revealed that STS inhibited mitochondrial respiration and promoted glycolysis in HUVEC. The effect of STS on migration and proliferation was glycolysis-dependent. STS probably acts through metabolic reprogramming of endothelial cells toward a more proliferative glycolytic state. These findings may hold broad clinical implications for patients suffering from vascular occlusive diseases.

5.
EBioMedicine ; 78: 103954, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35334307

RESUMO

BACKGROUND: Intimal hyperplasia (IH) remains a major limitation in the long-term success of any type of revascularisation. IH is due to vascular smooth muscle cell (VSMC) dedifferentiation, proliferation and migration. The gasotransmitter Hydrogen Sulfide (H2S), mainly produced in blood vessels by the enzyme cystathionine- γ-lyase (CSE), inhibits IH in pre-clinical models. However, there is currently no H2S donor available to treat patients. Here we used sodium thiosulfate (STS), a clinically-approved source of sulfur, to limit IH. METHODS: Low density lipoprotein receptor deleted (LDLR-/-), WT or Cse-deleted (Cse-/-) male mice randomly treated with 4 g/L STS in the water bottle were submitted to focal carotid artery stenosis to induce IH. Human vein segments were maintained in culture for 7 days to induce IH. Further in vitro studies were conducted in primary human vascular smooth muscle cells (VSMCs). FINDINGS: STS inhibited IH in WT mice, as well as in LDLR-/- and Cse-/- mice, and in human vein segments. STS inhibited cell proliferation in the carotid artery wall and in human vein segments. STS increased polysulfides in vivo and protein persulfidation in vitro, which correlated with microtubule depolymerisation, cell cycle arrest and reduced VSMC migration and proliferation. INTERPRETATION: STS, a drug used for the treatment of cyanide poisoning and calciphylaxis, protects against IH in a mouse model of arterial restenosis and in human vein segments. STS acts as an H2S donor to limit VSMC migration and proliferation via microtubule depolymerisation. FUNDING: This work was supported by the Swiss National Science Foundation (grant FN-310030_176158 to FA and SD and PZ00P3-185927 to AL); the Novartis Foundation to FA; and the Union des Sociétés Suisses des Maladies Vasculaires to SD, and the Fondation pour la recherche en chirurgie vasculaire et thoracique.


Assuntos
Sulfeto de Hidrogênio , Animais , Proliferação de Células , Cistationina gama-Liase/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hiperplasia/patologia , Masculino , Camundongos , Miócitos de Músculo Liso/metabolismo , Tiossulfatos , Tubulina (Proteína)/metabolismo
6.
J Surg Res ; 272: 132-138, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973547

RESUMO

BACKGROUND: Biological xenografts using tubulized porcine pericardium are an alternative to replace infected prosthetic graft. We recently reported an innovative technique using a stapled porcine pericardial bioconduit for immediate vascular reconstruction in emergency. The objective of this study is to compare the growth and adherence to grafts of bacteria and yeast incubated with stapled porcine pericardium, sutured or naked pericardium. MATERIAL AND METHODS: One square centimeter of porcine pericardial patches, with or without staples or sutures, was incubated with 105 colony forming units of Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans for 1, 6, and 24 h. The medium was collected to quantify planktonic microorganisms, while grafts were sonicated to quantify adherent microorganisms. Dacron and Dacron Silver were analyzed in parallel as synthetic reference prostheses. RESULTS: Stapled porcine pericardium reduced the growth and the adherence of E coli (2- to 30-fold; P < 0.0005), S aureus (11- to 1000-fold; P < 0.0006), S epidermidis (>500-fold; P < 0.0001), and C albicans (12- to 50-fold; P < 0.0001) when compared to medium alone (growth) and pericardium or Dacron (adherence). Native and sutured porcine pericardium interfered with the growth and the adherence of E coli and C albicans, and Dacron with that of S epidermidis. As expected, Dacron Silver was robustly bactericidal. CONCLUSIONS: Stapled porcine pericardium exhibited a lower susceptibility to infection by bacteria and yeasts in vitro when compared to the native and sutured porcine pericardium. Stapled porcine pericardium might be a good option for rapid vascular grafting without increasing infectivity.


Assuntos
Prótese Vascular , Polietilenotereftalatos , Animais , Escherichia coli , Humanos , Pericárdio , Prata , Staphylococcus aureus , Staphylococcus epidermidis , Suínos
7.
Eur J Vasc Endovasc Surg ; 63(2): 336-346, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34916111

RESUMO

OBJECTIVE: Hypertension is a major risk factor for intimal hyperplasia (IH) and re-stenosis following vascular and endovascular interventions. Preclinical studies suggest that hydrogen sulphide (H2S), an endogenous gasotransmitter, limits re-stenosis. While there is no clinically available pure H2S releasing compound, the sulfhydryl containing angiotensin converting enzyme inhibitor zofenopril is a source of H2S. Here, it was hypothesised that zofenopril, due to H2S release, would be superior to other non-sulfhydryl containing angiotensin converting enzyme inhibitors (ACEi) in reducing intimal hyperplasia. METHODS: Spontaneously hypertensive male Cx40 deleted mice (Cx40-/-) or wild type (WT) littermates were randomly treated with enalapril 20 mg or zofenopril 30 mg. Discarded human vein segments and primary human smooth muscle cells (SMCs) were treated with the active compound enalaprilat or zofenoprilat. IH was evaluated in mice 28 days after focal carotid artery stenosis surgery and in human vein segments cultured for seven days ex vivo. Human primary smooth muscle cell (SMC) proliferation and migration were studied in vitro. RESULTS: Compared with control animals (intima/media thickness 2.3 ± 0.33 µm), enalapril reduced IH in Cx40-/- hypertensive mice by 30% (1.7 ± 0.35 µm; p = .037), while zofenopril abrogated IH (0.4 ± 0.16 µm; p < .002 vs. control and p > .99 vs. sham operated Cx40-/- mice). In WT normotensive mice, enalapril had no effect (0.9665 ± 0.2 µm in control vs. 1.140 ± 0.27 µm; p > .99), while zofenopril also abrogated IH (0.1623 ± 0.07 µm; p < .008 vs. control and p > .99 vs. sham operated WT mice). Zofenoprilat, but not enalaprilat, also prevented IH in human vein segments ex vivo. The effect of zofenopril on carotid and SMCs correlated with reduced SMC proliferation and migration. Zofenoprilat inhibited the mitogen activated protein kinase and mammalian target of rapamycin pathways in SMCs and human vein segments. CONCLUSION: Zofenopril provides extra beneficial effects compared with non-sulfhydryl ACEi in reducing SMC proliferation and re-stenosis, even in normotensive animals. These findings may hold broad clinical implications for patients suffering from vascular occlusive diseases and hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Captopril/análogos & derivados , Estenose das Carótidas/tratamento farmacológico , Hipertensão/complicações , Túnica Íntima/patologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Captopril/administração & dosagem , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Estenose das Carótidas/etiologia , Estenose das Carótidas/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Sulfeto de Hidrogênio/metabolismo , Hiperplasia/tratamento farmacológico , Hiperplasia/patologia , Hipertensão/tratamento farmacológico , Masculino , Camundongos , Miócitos de Músculo Liso , Técnicas de Cultura de Órgãos , Cultura Primária de Células , Túnica Íntima/efeitos dos fármacos , Veias/efeitos dos fármacos , Veias/patologia
8.
Cell Death Dis ; 9(2): 96, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367588

RESUMO

Type 1 diabetes (T1D) results from ß-cell destruction due to concerted action of both innate and adaptive immune responses. Pro-inflammatory cytokines, such as interleukin-1ß and interferon-γ, secreted by the immune cells invading islets of Langerhans, contribute to pancreatic ß-cell death in T1D. Cytokine-induced endoplasmic reticulum (ER) stress plays a central role in ß-cell demise. ER stress can modulate autophagic response; however, no study addressed the regulation of autophagy during the pathophysiology of T1D. In this study, we document that cytokines activate the AMPK-ULK-1 pathway while inhibiting mTORC1, which stimulates autophagy activity in an ER stress-dependent manner. On the other hand, time-course analysis of LC3-II accumulation in autophagosomes revealed that cytokines block the autophagy flux in an ER stress independent manner, leading to the formation of large dysfunctional autophagosomes and worsening of ER stress. Cytokines rapidly impair lysosome function, leading to lysosome membrane permeabilization, Cathepsin B leakage and lysosomal cell death. Blocking cathepsin activity partially protects against cytokine-induced or torin1-induced apoptosis, whereas blocking autophagy aggravates cytokine-induced CHOP overexpression and ß-cell apoptosis. In conclusion, cytokines stimulate the early steps of autophagy while blocking the autophagic flux, which aggravate ER stress and trigger lysosomal cell death. Restoration of autophagy/lysosomal function may represent a novel strategy to improve ß-cell resistance in the context of T1D.


Assuntos
Apoptose , Autofagia , Citocinas/toxicidade , Mediadores da Inflamação/toxicidade , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Catepsina B/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitofagia/efeitos dos fármacos , Modelos Biológicos , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição CHOP/metabolismo
9.
Cardiovasc Res ; 113(7): 805-816, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449099

RESUMO

AIMS: Intimal hyperplasia (IH) is an abnormal response to vessel injury characterized by the dedifferentiation, migration, and proliferation of quiescent vascular smooth muscle cells (VSMC) to form a neointima layer. Vascular connexins (Cx) are involved in the pathophysiology of various vascular diseases, and Cx43, the main Cx expressed in VSMC, has been shown to promote VSMC proliferation and IH. The aim of this study was to investigate the participation of another Cx, namely Cx37, in the formation of the neointima layer. METHODS AND RESULTS: Wild-type (WT) and Cx37-deficient (Cx37-/-) C57BL/6J mice were subjected to carotid artery ligation (CAL), a model of vessel injury and IH. The neointima developed linearly in WT until 28 days post surgery. In contrast, the neointima layer was almost absent 14 days after surgery in Cx37-/- mice, and twice as more developed after 28 days compared to WT mice. This large neointima formation correlated with a two-fold increase in cell proliferation in the media and neointima regions between 14 and 28 days in Cx37-/- mice compared to WT mice. The CAL triggered Cx43 overexpression in the media and neointima layers of ligated carotids in WT mice, and selectively up-regulated Cx37 expression in the media layer, but not in the neointima layer. The de novo expression of Cx37 in human primary VSMC reduced cell proliferation and P-Akt levels, in association with lower Cx43 levels, whereas Cx43 overexpression increased P-Akt levels. CONCLUSION: The presence of Cx37 in the media layer of injured arteries restrains VSMC proliferation and limits the development of IH, presumably by interfering with the pro-proliferative effect of Cx43 and the Akt pathway.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Estenose das Carótidas/metabolismo , Proliferação de Células , Conexinas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Idoso , Animais , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Estenose das Carótidas/genética , Estenose das Carótidas/patologia , Células Cultivadas , Conexina 43/metabolismo , Conexinas/deficiência , Conexinas/genética , Modelos Animais de Doenças , Feminino , Humanos , Hiperplasia , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Tempo
10.
Blood ; 108(10): 3352-9, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16849645

RESUMO

Selectins and their ligand P-selectin glycoprotein ligand-1 (PSGL-1) mediate leukocyte rolling along inflamed vessels. Cell rolling is modulated by selectin interactions with their ligands and by topographic requirements including L-selectin and PSGL-1 clustering on tips of leukocyte microvilli. Lipid rafts are cell membrane microdomains reported to function as signaling platforms. Here, we show that disruption of leukocyte lipid rafts with cholesterol chelating agents depleted raft-associated PSGL-1 and L-selectin and strongly reduced L-, P-, and E-selectin-dependent rolling. Cholesterol repletion reversed inhibition of cell rolling. Importantly, leukocyte rolling on P-selectin induced the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase associated to lipid raft PSGL-1. Furthermore, inhibition of Syk activity or expression, with pharmacologic inhibitors or by RNA interference, strongly reduced leukocyte rolling on P-selectin, but not on E-selectin or PSGL-1. These observations identify novel regulatory mechanisms of leukocyte rolling on selectins with a strong dependency on lipid raft integrity and Syk activity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Migração e Rolagem de Leucócitos , Microdomínios da Membrana/química , Proteínas de Membrana/fisiologia , Neutrófilos/fisiologia , Proteínas Tirosina Quinases/fisiologia , Selectinas , Colesterol/fisiologia , Selectina E , Humanos , Selectina L , Glicoproteínas de Membrana , Microdomínios da Membrana/fisiologia , Neutrófilos/química , Selectina-P , Complexo Glicoproteico GPIb-IX de Plaquetas , Estresse Mecânico , Quinase Syk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...